Disinfection of greywater effluent and regrowth potential of selected bacteria.
نویسندگان
چکیده
Chlorination and UV irradiation of RBC (rotating biological contactor)-treated light GW (greywater) was investigated. The ability of chlorine and UV to inactivate indictor bacteria (FC - Faecal Coliforms, HPC - Heterotrophic Plate Count) and specific pathogens (P.a. - Pseudomonas aeruginosa sp., S.a. - Staphylococcus aureus sp.), was assessed and their regrowth potential was examined. The RBC removed 88.5-99.9% of all four bacteria groups. Nevertheless, the treated GW had to be disinfected. Most of the chlorine was consumed during the first 0.5 h, while later its decay rate decreased significantly, leaving enough residual after 6 h to prevent regrowth and to further inactivate bacteria in the stored GW effluent. Under exposure to low UV doses (≤69 mJ/cm(2)) FC was the most resistant bacteria group, followed by HPC, P.a. and S.a. Exposure to higher doses (≤439 mJs/cm(2)) completely inactivated FC, P.a. and S.a., while no further HPC inactivation was observed. FC, P.a. and S.a. did not exhibit regrowth after exposure to all the UV doses applied (up to 6 h storage). HPC did not exhibit regrowth after exposure to low UV doses (19-69 mJ/cm2), while it presented statistically significant regrowth in un-disinfected effluent and after exposure to higher UV doses (147-439 mJ/cm(2)).
منابع مشابه
Performance of UV disinfection and the microbial quality of greywater effluent along a reuse system for toilet flushing.
This paper examines the microbial quality of treated RBC (Rotating Biological Contactor) and MBR (Membrane Bioreactor) light greywater along a continuous pilot-scale reuse system for toilet flushing, quantifies the efficiency of UV disinfection unit, and evaluates the regrowth potential of selected microorganisms along the system. The UV disinfection unit was found to be very efficient in reduc...
متن کاملUv Disinfection of Treated Wastewater Effluent: Influence of Color, Reactivation and Regrowth of Coliform Bacteria
Disinfection is a very important unit process to deactivate coliform bacteria in treated wastewater. However, regrowth potential of coliform bacteria raises human health and safety concerns associated with reuse of treated wastewater in various applications. Both post chlorination and post UV disinfection regrowth have been reported in the literature. In view of increasing use of recycled waste...
متن کاملOn-site greywater treatment and reuse in multi-storey buildings.
The paper presents a study of a pilot plant treating light greywater for seven flats. The pilot plant combines biological treatment (RBC) with physicochemical treatment (sand filtration and disinfection). The pilot plant produced effluent of excellent quality, meeting the urban reuse quality regulations, and was very efficient in TSS turbidity and BOD removal: 82%, 98% and 96%, respectively. CO...
متن کاملInactivation and regrowth of antibiotic-resistant bacteria by PAA disinfection in the secondary effluent of a municipal wastewater treatment plant.
Inactivation and microbial regrowth of penicillin-, ampicillin-, cefalexin-, tetracycline-, chloramphenicol-, and rifampicin-resistant bacteria were studied to explore risks associated with selection and regrowth of antibiotic-resistant bacteria after PAA disinfection. The results showed that after exposure to 20 mg/L PAA for 10 min, inactivation of ampicillin-resistant bacteria reached 2.3-log...
متن کاملImpact of different light intermittence regimes on bacteria during simulated solar treatment of secondary effluent: Implications of the inserted dark periods
In this study, the effect of light intermittence on solar disinfection of secondary treated wastewater was investigated. Synthetic secondary effluent was spiked with E. coli and submitted to 3 different light intermittence regimes by circulating the effluent between a dark storage tank and three in-series illuminated reactors. The relative influence of the recirculation rate on bacterial inacti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water science and technology : a journal of the International Association on Water Pollution Research
دوره 63 5 شماره
صفحات -
تاریخ انتشار 2011